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Abstract— Carpooling has been long deemed a promising ap-
proach to better utilizing existing transportation infrastructure.
However, there are several reasons carpooling is still not the
preferred mode of commute in the United States: first, complex
human factors, including time constraints and not having right
incentive structures, discourage the sharing of rides; second,
algorithmic and technical barriers inhibit the development of
online services for matching riders. In this work, we study
algorithms for 3+ high-occupancy vehicle (HOV) lanes, which
permit vehicles that hold three or more people. We focus on
the technical barriers but also address the aforementioned
human factors. We formulate the HOV3 Carpool problem,
and show that it is NP-Complete. We thus pose the relaxed
problem HOV3- Carpool problem, allowing groups of up to size
three, and propose several methods for solving the problem
of finding globally optimal carpool groups that may utilize
these 3- HOV lanes. Our methods include local search, integer
programming, and dynamic programming. Our local search
methods include sampling-based (hill-climbing and simulated
annealing), classical neighborhood search, and a hybrid random
neighborhood search. We assess the methods numerically in
terms of objective value and scalability. Our findings show
that our sampling-based local search methods scale up to 100K
agents, thereby improving upon related previous work (which
studies up to 1000 agents). The hill climbing local search method
converges significantly closer and faster towards a naive lower
bound on cumulative carpooling cost.

I. INTRODUCTION

Transportation-related costs of air pollution, greenhouse
gas emissions, noise, delay from traffic congestion, and
losses and injury from collisions are estimated to be ap-
proaching $1.1 trillion annually in the US [1], [2], [3]. We
investigate ridesharing [4], [5] as a promising path forward
for reducing the multiple costs associated with transporta-
tion..

The main goal of our article is studying the carpooling
incentive of high-occupancy-vehicle (HOV) lanes, and how
such incentives can be algorithmically incorporated into
ridesharing systems. Studying HOV lanes is compelling
because 1) they have the potential to counter social barriers
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against carpooling, such as trust and personal commute
preferences, by permitting the use of lower latency lanes,
and 2) they provide a relatively easy to implement scheme,
through the repurposing of existing infrastructure.

Commonly, HOV lanes may have restrictions which spec-
ify how many people must be in a vehicle in order to use the
lane. In most locations, HOV lanes require at least two occu-
pants. Increasingly, in bottleneck areas such as metropolitan
areas, including the San Francisco Bay Area and Seattle,
WA, HOV lanes are increasingly requiring three passengers
in order to maintain high throughput. Optimizing our use of
existing road network is a highly complex problem, but it
starts with optimizing our use of the HOV lanes, which is
the topic of this article. For a fixed set of drivers, the problem
of having exactly two occupants in each vehicle reduces to
bipartite graph matching, for which efficient algorithms exist.
Remarkably, the problem of having exactly three occupants
in each vehicle is NP-Complete, so it is very unlikely that
an efficient algorithm can solve the problem exactly. In
this article, we prove this complexity result and present
algorithms to solve the problem approximately. This crossing
from a tractable (HOV2) to intractable (HOV3) problem, if
not addressed, would greatly impede the scalability of any
real-world rideshare matchup system.

We cast the ridesharing problem with HOV lanes into
a general combinatorial optimization framework [6], [7],
which enables us to devise and invoke several types of
solution methods and assess their accuracy and scalability.
In particular, we formulate our problem as a set partitioning
problem, an integer program, and as a dynamic programming
recurrence. We study local search, integer programming, and
dynamic programming methods to the problem.

Contributions The main contributions of this article are:

• We formulate and present the HOV3 Carpool and
HOV3- Carpool problems, which specifically integrate
the carpooling incentive of 3+ high-occupancy vehicle
(HOV) lanes.

• We prove that the HOV3 Carpool problem is NP-
Complete by reduction from Exact Cover by 3-Set.
In contrast, we demonstrate that the HOV3- Carpool
problem is amenable to iterative methods such as local
search.

• We devise four local search methods for the relaxed
HOV3- Carpool problem: hill climbing, simulated an-
nealing, classical local search, and local search with
random neighborhood. The first two are sampling-based
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local search methods; the third is a classical local
search approach; the fourth combines sampling with the
classical local search approach.

• To demonstrate the limitations of classical and gen-
eral methods for the carpool problem, we present for
comparison a integer program (IP) formulation and a
dynamic programming formulation for the HOV3- Car-
pool problem. Our IP formulation utilizes the problem
structure to yield a concise representation.

• We empirically compare the above six methods on
Euclidean and Bay Area synthetic workloads (simulated
participants) of up to 100K agents. We show that the
hill climbing method by far outperforms the rest in
terms of scale, computational runtime, and convergence
to a naive lower bound. For the largest problem size
of 100K, the hill climbing method converges to a ratio
close to 1 to the lower bound.

Related work Many variants of the carpooling problem
have been studied, for instance focusing on maximizing the
number of participants [8] or minimizing the total distance or
time [9]; for more variants, we refer the reader to excellent
surveys on ridesharing by [10] and [5]. Although there are
numerous works studying the HOV or high-occupancy toll
(HOT) lanes from the perspective of pricing [11], [12], we
are not aware of any work that explicitly optimizes for its
utilization.

Our work temporarily side-steps the pricing aspect of the
carpooling problem to focus on the optimization aspect;
however, since we optimize for the global cost, our work is
compatible with the incentive-compatible pricing mechanism
introduced by [13], based on the Vickery auction [14]. A
closely related work [15] studies MILP and CP methods for
a variant of the globally optimum problem where passengers
travel to the pickup locations that are along the path of
the driver. This tremendously simplifies the complexity of
the problem but may provide a less seamless experience for
passengers. We provide a formulation which permits driver
deviations for passenger pickups.

Several related works have also shown most variants of
the ridesharing problem to be NP-Hard and have pointed
out some special cases to be solvable in polynomial time,
for instance the case of pre-assigning driver and rider roles
reduces to bipartite graph matching [16], [17]. Most studies
thus largely focus on small problem sizes (up to about
1000 agents) [8], which is a strong technical limitation for
providing carpooling at scale as a suitable transportation
alternative. One of the primary goals of our work is to
devise highly scalable methods for our specific HOV carpool
problem.

II. THE CARPOOL PROBLEM

A natural way to optimize for HOV-lane use is to optimize
for the best configuration of carpools of size three. However,
we prove in this section by reduction that this problem is NP-
Hard. Subsequently, we study a relaxed version where we
optimize for carpools of size up to (and including) three. The

relaxed problem lends itself more easily to approximation
methods such as local search.

A. Optimizing usage of the HOV3+ lane

In this article, we study the carpool incentive of permitting
usage of specific lower latency lanes (often on the freeway)
which require at least three occupants in a vehicle. Under
such a policy, there is little incentive for vehicles to have
more than three occupants, since each additional passen-
ger adds additional divergence costs to the carpool group.
Consequently, we reason that the best reasonably achievable
solution would optimize for three occupants per vehicle.

Now we specialize to the HOV3 carpool problem, in which
the goal is to find size-three ridesharing groups that minimize
the overall cost of the system. Additionally, we consider time
constraints.

Definition 1 (HOV3 carpool problem): Let U be the set
of agents. Each agent is endowed with a home and a work
location (xuh, x

u
w),∀u ∈ U as well as time windows Tu =

(tu0 , t
u
1 , . . . ),∀u ∈ U with tui = [tus , t

u
e ]. The collection of

feasible subsets of the universe (rideshare groups) S consists
of groups of size 3 such that the agents have a non-empty
common time window. That is,

S :=

{
S : S ∈ 2U , |S| = 3,

⋂
u∈S

tu 6= ∅

}
. (1)

The overall objective of the HOV3 carpool problem is to
find a subset R ⊆ S such that
• R minimizes some given cost function C : 2S → R.
• R forms a partition of U , as no agent may participate

simultaneously in multiple ridesharing groups.
The specific cost function we study is given in Equa-

tion 4. The search version (as opposed to the optimization
version) of this problem, which excludes costs, is already
NP-complete, as we will prove next in Section II-B.

B. Reduction from Exact Cover by 3-Set

The Exact Cover by 3-Set problem is a known NP-
Complete problem (by generalization of Tripartite Matching,
which is NP-Complete [18]). The problem is as follows:
F = {S1, . . . , Sm} of subsets of a finite set U with |Si| = 3
and |U | = 3m for some m. Find m sets in F that are disjoint
and have U as their union.

We observe that Exact Cover by 3-Set problem is closely
related to the search version of the HOV3 carpool problem,
allowing us to show the following complexity result:

Theorem 1: HOV3 carpool search is NP-complete.
Proof: First, the problem is trivially in NP. Given a

set of rideshare groups, it can be checked in polynomial
time that groups indeed form a partition. Naively this can
be done in O

(
n2
)
. Furthermore, even if given a solution

that may contain arbitrary subsets of U (not necessarily in
S), it can be checked in linear time if the groups satisfy time
and size constraints (and thus are feasible subsets in S).

Now, we show by reduction from Exact Cover by 3-Set
that the HOV3 carpool problem is NP-Hard.
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(⇒) : An instance of Exact Cover by 3-Set can be mapped
in polynomial time to an instance of the HOV3 carpool
problem as follows: Let U := U . For each subset Si ∈ F ,
select a new time window t which has no overlap with any
other time window used so far, and let t ∈ Tu,∀u ∈ Si.
This assignment ensures that Si ∈ F =⇒ Si ∈ S ,
and the uniqueness of the time window ensures that Si ∈
S =⇒ Si ∈ F . Note that the size-3 constraint is satisfied
by definition of the Exact Cover by 3-Set problem.
(⇐) : A solution, i.e. a partition, R to the HOV3 carpool
instance can then be mapped directly to a solution to the
Exact Cover by 3-Set instance, as all sets S ∈ R are size
three, are subsets of U = U , and are by construction in
S = F .

Then, Exact Cover by 3-Set reduces to HOV3 carpool
problem, and thus the latter is NP-hard. We conclude that
the HOV3 carpool problem is NP-Complete.

Corollary 2: The HOV3 carpool problem (optimization
version) (see Definition 1), is NP-Hard.

In addition to the complexity result, the HOV3 Carpool
problem has several additional pain points. First, simply
finding a feasible solution to the HOV3 problem is difficult.

Lemma 3: Finding a feasible solution to the HOV3 prob-
lem (optimization version) is NP-Complete.

Proof: Finding a feasible solution is the same as the
search version of the problem, which disregards the cost.
Then, the result follows from Theorem 1.

Second, due to the partition constraint, it is difficult
to use standard approximation techniques such as linear
programming (LP) relaxation. Once the partition constraint
is violated, such as through a LP rounding scheme, it is
difficult to recover a partition; recovering it may be seen as
another combinatorial optimization problem.

C. Relaxation of HOV3 carpool problem

Finally, we present the HOV3- carpool problem, which we
study for the remainder of the article, referred to simply as
the carpool problem. The only difference from the previous
problem is that feasible rideshare groups may now have
size less than or equal to three (|S| ≤ 3), so due to
space limitations, we only provide the new definition for the
collection of feasible subsets S:

S :=

{
S : S ∈ 2U , |S| ≤ 3,

⋂
u∈S

Tu 6= ∅

}
. (2)

D. Problem setting

Global optimum In this article, we study computing the
globally optimal physical distance. In particular, any agent
may be a driver or a passenger. The driver picks up all the
passengers. The cost of a rideshare group is the distance
traveled by the driver. The overall cost of a carpool solution
is the sum of the cost of each rideshare group in the solution.
That is,

cS =
∑

(u,v)∈TSP(S)

duv (3)

C =
∑
S∈R

cS (4)

where TSP(S) denotes the solution to the Traveling Sales-
man Problem. Given a set of agents S, TSP(S) computes
the minimum cost tour (given as pairs of locations, i.e.
(x1, x2), (x2, x3), ...). We study the global optimum in the
sense that this objective minimizes the total vehicle distance
traveled, and thus has implications for fuel consumption and
greenhouse gas (GHG) emissions.

Capacity We assume that all agents have vehicles, that the
capacity is three, that the vehicle capacity is uniform.

Single destination, single time window We specialize to
the setting where all agents have the same destination and
all agents are allowed to specify one time window.

Static We solve the static version of the problem, where
travel is instantaneous; there is no time overhead for pickups.

III. PROBLEM FORMULATION

A. Carpool as a set partition problem

We give a natural 3-set partition formulation of the carpool
problem.

min
x

∑
S∈S

cSxS (5)

s.t.
∑

S:u∈S
xS = 1, ∀u ∈ U (6)

xS ∈ {0, 1} , ∀S ∈ S (7)

where S is the feasible subsets defined in Equation 2 and cS
is the group cost defined in Equation 3.

This formulation, unlike the integer and dynamic program-
ming formulations, not only decouples the cost computation
cS from the rest of the problem, it allows representing all the
constraints concisely as S. Additionally, by representing the
solution vector as a binary vector of size |S|, this formulation
enables the easy design and expression of neighborhoods
with respect to the solution vector.

Neighborhoods We now describe the neighborhoods we
studied. Due to space limitations, we have excluded their
explicit representation. We consider two neighborhoods in
our subsequent methods: the swap neighborhood and the
move neighborhood. The swap neighborhood consists of
a single pairwise swap between two groups. The move
neighborhood consists of a single move of a agent from one
group to another.

B. Carpool as a dynamic programming problem

We present a formulation which lends itself to a dynamic
programming (DP) scheme for exhaustively searching the so-
lution space for the optimal solution. This approach provides
a naive but exact baseline for comparing our methods, as this
is a highly expensive method but one that is guaranteed to
return the optimal answer (in exponential time).
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Let I = {1, 2, . . .} denote the index set numbering the
rideshare groups in the solution. For convenience, let index
j = 0 represent an unassigned agent, and let j = 1, 2, . . . be
the rideshare group number. Let M ∈ (I ∪ {0})n denote
a (partial) assignment vector, where agent i is assigned
to rideshare group number M [i] (which may be 0, i.e.
unassigned). This vector keeps track of subproblems in our
DP formulation.

Now, we define the following subproblem: G(M, j) gives
the best configuration for the unassigned agents indicated by
M and assigns the first unassigned agent (defined as i) to
rideshare group number j:

G(M, j) = min

{
c{i} +G(M + j1i, j + 1), (8)

c{i,g} + min
g∈M0\{i}

G(M + j1g + j1i, j + 1),

(9)

c{i}∪g + min
g∈(M0\{i}

2 )
G(M + j1g + j1i, j + 1)

}
(10)

G(M, j) = 0 ∀j if M0 = ∅ (base case) (11)

where M0 denotes the indices of the zero entries of M ,
and we let i := minM0, the index of the first unassigned
agent. We denote 1i as the indicator vector, with a one in the
ith position and zero everywhere else. The three terms within
the minimization refers to placing i in a carpool group of size
one, two, and three, respectively, and then labeling that as
the jth rideshare group. We use the binomial coefficient in
Equation (10) as shorthand for selecting all groups of size
two:

g ∈
(
M0 \ {i}

2

)
⇐⇒ (12)

g = {a1, a2} ∈M0 \ {i} ×M0 \ {i} : a1 6= a2 (13)
The subsequent subproblem assigns the j + 1th rideshare
group and excludes the agents assigned to group number j.
Notice that there is no explicit collection of feasible subsets,
so let cS = ∞ when S is infeasible (incompatible time
windows). The base case (Equation (11)) is invoked when
all agents have been assigned, i.e. M0 = ∅.

To solve the overall problem, we invoke G(0, 1), where
0 denotes the all zeros vector. That is, at first, all agents are
unassigned, and without loss of generality we can place the
first agent in rideshare group number 1.

A rough estimate gives that a problem of 10 agents
requires checking 6 × 107 possibilities. A problem with 20
agents requires checking 1.6 × 1021 possibilities. With 20
agents, if each possibility can be checked in 1nsec, then the
computation would take 50, 735 years. Needless to say, we
were not able to solve the problem for 20 agents. The size
10 problem, on the other hand, computes in 0.80 seconds.

C. Carpool as an integer program

Variables: We first define some additional needed notation.
Inputs • oouv = distance between the origin of agent u

and origin of agent v. Note that oouu = 0.

• odu = distance between the origin and destina-
tion of agent u

• tui = (tus , t
u
e ) = the time window of valid departure

times for agent i
Output• yuvw ∈ {0, 1} = 1 if driver u is carpooling with

passengers v and w, 0 otherwise. In addition, if a
driver is picking up only one passenger, yuvv = 1
and if no passengers, yuuu = 1.

IP Formulation: The key insight of our integer program-
ming (IP) formulation, which permits a clean and concise
representation, is to encode fixed-size groups of size three,
and pad smaller groups as needed. Thus, a lone driver u ∈ U
would be represented by a group (u, u, u); observe that the
distance traveled is oouu+oouu+odu = 0+0+odu = odu.
The IP formulation is as follows:

min
y

∑
i∈U

yuvw · [oouv + oovw + odw]

subject to∑
v,w∈U

yuvw +
∑

v,w∈U
yvuw +

∑
v,w∈U

yvwu (14)

−
∑
v∈U

yuuv −
∑
v∈U

yuvu −
∑
v∈U

yvuu

+ yuuu = 1,∀u
yuuv = 0,∀u, v, u 6= v (15)
yuvw =⇒ [tus , t

u
e ] ∩ [tvs , t

v
e ] ∩ [tws t

w
e ] 6= ∅,∀u, v, w (16)

(1− yuvw) ∨ ( max
x∈{u,v,w}

(txs ) ≤ min
x∈{u,v,w}

(txe )),∀u, v, w

The overall objective is the total distance traveled by the
drivers. Equation (14) ensures that each agent be in exactly
one group. Since each agent may be a driver yu∗∗, first
passenger y∗u∗, or the second passenger y∗∗u, we need to
delete double- and triple-counted duplicates.

Equation (15) addresses the fact that we can represent a
two person group with (u, v) as either yuuv or yuvv , but not
both. We have chosen arbitrarily yuvv for this case, so we
need to ensure that yuuv is never set. Finally, Equation (16)
enforces that for each group of agents, there is some overlap
in their time windows.

D. Lower bound

Let’s denote the perfect carpooling lower bound on the
carpool problem by

objLB =
1

3

∑
u

odu (17)

which assumes that every agent is in a three-person carpool
and incurs no additional pickup costs.

IV. METHODS FOR SOLVING THE CARPOOL PROBLEM

In this section, we describe the algorithms for solving
the carpool problem. We describe methods for each of
the problem formulations given in Section III. For the set
partitioning problem, we pose four local search methods;
for dynamic programming, we use a memoized recursive

1392



approach; for integer programming, we invoked an open-
source MILP solver.
Local search: hill climbing Hill climbing is the simplest and
most efficient of our local search methods. In each iteration,
a random coin flip determines which neighborhood to sample
from. Then, a swap or move is sampled accordingly. Then,
if the action improves the overall objective value, then the
action is accepted (X is updated).

Sampling a neighbor takes O
(
n
)

and computing the cost
difference takes O

(
1
)
, so each iteration takes O

(
n
)

time.
Local search: simulated annealing A generalization of
hill climbing is simulated annealing, which has a few key
aspects: 1) it allows multiple actions to occur in a single
iteration, 2) it allows actions which worsen the objective to
be accepted, and 3) it allows tuning the number of actions
and probability of accepting a worse solution, even as the
algorithm progresses.

At each iteration, this method consists of sampling a
number of actions (moves or swaps) according to the current
temperature T . All actions are performed and then evaluated
relative to the current iterate X . If the objective is better, it
is accepted as before. If the objective is worse, the actions
can be accepted with probability according to the magnitude
of change and a temperature parameter. At the end of each
iteration, the temperature parameter is decayed at rate β.

The iteration complexity of this method is again O
(
n
)
.

However, the constant factor is larger and determined by the
temperature parameters (T, β).
Local search: swap and move neighborhood In the classi-
cal local search method, at each iteration, a full search of the
swap and move neighborhoods is performed and the single
best action is selected.
Local search: random neighborhood Our last local search
method combines some of the deterministic aspects of the
classical local search method with the stochastic nature of
hill climbing. At each iteration, a coin flip chooses a random
neighborhood (move or swap). Then, the best action within
that neighborhood is selected.
Exhaustive search: dynamic programming We use a mem-
oized recursive DP scheme to solve the subproblems given
by Equations (8)-(11) in Section III-B.
Integer program We implemented our IP formulation in
Python-based Numberjack [19], an open-source framework
that interfaces with MILP and constraint programming (CP)
solvers. Specifically, we used the SCIP solver [20].

V. NUMERICAL IMPLEMENTATION

For our experiments, we generated problem instances with
agent sizes that are exponentially increasing (from 10 to
100K) and attempted to solve them using multiple methods,
both exact and approximate.

A. Workloads

We experimented with problem instances drawn from two
different settings.

Euclidean setting In the Euclidean setting, we generated
agent home locations based on a Gaussian distribution over
the R2 space.

San Francisco (SF) Bay Area setting In this setting, we
assigned agent home locations by sampling with replacement
from a dataset consisting of 400k agent plans for the San
Francisco Bay Area [21] based on the California Metropoli-
tan Transportation Commission (MTC) travel model. We
uniformly randomly selected a one-hour time window for
each agent.

Problem sizes In the prior work, the largest instances have
been 1000 and typically much smaller. However, if we want
to support carpooling at a scale that can make a significant
social impact, we need to work with much larger problem
sizes. For example, the population of the nine-county Bay
Area is more than seven million [22]. So supporting even
1-2% of the population will require supporting agent counts
that are one-two orders of magnitude larger (70K - 140K).
Therefore, we studied instances of {10, 100, 1K, 10K, 100K}
agents.

B. Initialization

We now briefly describe our stages of computing an initial
solution, which is important for the local search methods.
We first greedily form agents into groups by repeatedly
selecting an available agent and the closest two agents to
her. We refer to this as the raw init stage because this
initialization could violate the time constraints. Then to
satisfy the time constraints, we arbitrarily break up groups
which are not compatible in time. We refer to this as
the raw init time ranges stage. Finally, we solve the
small traveling salesman problem to optimize the ordering
of the agents in each group and thereby compute cS ; this is
the raw init opt pickup stage.

C. SF Bay Area distance pre-computation

In the San Francisco Bay Area setting, the act of query-
ing (i) distances from origin to destination of agents, and
(ii) pairwise distances between agent origins, underlies the
operation of every method. Although computing Euclidean
distances takes roughly 0.5 msec, querying a routing service
incurs I/O cost, thus increasing the time cost to the order
of hundreds of milliseconds. Thus the non-Euclidean setting
appears to immediately incur a penalty of 100x, regardless
of how fast the algorithm is. To overcome this, we pre-
compute the O

(
n2
)

required distances. For 100K agents,
the space requirement for pre-computation is on the order of
20GB; this is easily supportable even with a general purpose
m4.2xlarge AWS instance, which has 32GB of RAM.

Unfortunately, due to the O
(
n2
)

nature of the pairwise dis-
tance computations, even the pre-computation time does not
scale well beyond 10k agents. As we can see from Table I,
even using the roadsindb distance oracle [23], which uses
a pre-computed representation of driving distances between
all locations in a particular region, scaling from problem size
1k to size 10k increases the time required from 209 secs to 3
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hours. This quadratic increase implies that the pre-computing
distances for 100k agents would require 300 hours = 12.5
days. Thus in the 100K agents instances, we instead queried
distances on the fly as needed from roadsindb, and this
was successfully used in our largest local search experiments.

agents gen-gauss calc-dist gen-real roadsindb
10 0.135 0.009 80.754 0.043
100 2.130 0.721 85.204 2.010
1000 79.979 71.760 129.450 209.356
10K 70.622 412.742 169.458 12.3×103

TABLE I
TIME SCALING WHEN DISTANCE IS CALCULATED USING QUERIES TO

THE CACHED ROADSINDB DATA. ALL TIMES ARE IN SECS.

D. Experimental Setup

Our experimental setup consists of a combination of a
medium-sized AWS instance and a large shared server. The
system configurations of the two servers: 1) an AWS instance
with 8 CPUs and 30GB RAM, used to generate instances,
pre-compute distance matrices, and execute the size 100k
local search experiments, and 2) a shared lab server with 24
cores and 256GB RAM, used to run 10- 10k instances using
pre-computed distance matrices.

The experimental timeouts are set logarithmi-
cally; the timeouts are {1, 2, 3, 4, 5} hours for
{10, 100, 1000, 10k, 100k} agents, respectively.

VI. NUMERICAL RESULTS

Scalability In line with results from Section V-C, algorithms
with linear or greater running times did not scale. While the
exponential exhaustive search algorithms was not expected to
scale, we were surprised to find that it did not finish solving
even the 20 agent problem in over a day.

When we analyzed the computation time of four local
search methods (hill climbing, simulated annealing, classical
local search (called best step), and random neighborhood
local search (called best random) with increasing work-
loads, we found that the best step and best random
methods did not finish even one 10k iteration before timing
out after 4 hours. Figure 1 summarizes the time per iteration
cost of each method for varying problem sizes.

We additionally break the computation time down into
the various initialization stages (see Section V-B) and the
per iteration computation. The results are summarized in
Figure 2. Hill climbing and simulated annealing scale signif-
icantly better than the local search methods that perform a
full neighborhood search. For these methods, the per iteration
computation is significantly less than the initialization time.

This is an expected assessment because the local search
methods that perform a full neighborhood search are much
more thorough in their evaluation of which action to perform
at each iteration (thus taking O

(
n2
)

time to choose). The
next natural question is whether it is a necessary expense.

Fig. 1. Time per iteration for varying numbers of agents. Note that the
scale is log-log. The best step and best random methods were not
able to compute problem sizes 10k and 100K within the time alloted for
the respective problem sizes (see Section V-A).

Exact solvers We were unable to compute exact solutions
for problem sizes greater than 50 for IP and greater than 10
for dynamic programming (see Table II).

size IP obj IP time HC obj HC time
10 agents 0.898 2.137 0.898 1.11
20 agents 1.578 44.360 1.577 2.77
50 agents 3.413 12225.513 3.513 8.35

TABLE II
COMPARISON BETWEEN THE OBJECTIVE AND THE RUN-TIME (SEC) FOR

THE IP AND HILL CLIMBING (HC) METHODS. THIS DATA IS FROM A

SINGLE RANDOM INSTANCE FROM THE EUCLIDEAN SETTING.

Convergence We now turn to assessing the convergence of
each of the methods to the naive lower bound. Relating the
objective value to the naive lower bound conveniently allows
us to assess different problem sizes in the same figure by
normalizing the value. Figure 3 summarizes the convergence
of the different methods (minus simulated annealing) for
different problem sizes. We find that hill climbing by far
converges the fastest. However, the classical local search
method converges to a lower ratio in some instances. These
findings suggest combining the two methods to achieve the
best of both worlds: first using hill climbing to quickly
converge close to a local optimum, then using classical local
search to converge to an exact local optimum.

Simulated annealing is excluded from the previous figure
due to its chaotic nature in convergence. To demonstrate
this we have included a figure comparing the convergence
of simulated annealing to hill climbing (see Figure 4). We
note that our simulated annealing implementation is not
highly tuned for our problem. With tuning such as specialized
temperature schedules and restarts, simulated annealing has
been demonstrated to perform very well in many practical
combinatorial optimization settings. We do not claim that it
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Fig. 2. This figure demonstrates the scalability of the methods. Top: With
20 agents or more, the per iteration computation dominates the local search
methods which perform a full neighborhood search. Beyond 100 agents,
the relative timing becomes indistinguishable because the per iteration time
dominates, so we have excluded the larger values. Bottom: We focus on
the sampling-based local search methods, which scale much better in per
iteration computation time (the topmost stacked bar, barely visible). At 1000
agents, the per iteration computation is only a small fraction of the total
initialization time, but for larger sizes, the initialization far dominates the
per iteration computation because the initialization time is O

(
n2

)
, whereas

the per iteration computation is O
(
n
)
.

would not work here as well, but that we have not discovered
optimal hyperparameters.

VII. CONCLUSION

In this article, we cast the HOV-3 Carpool problem into
the framework of combinatorial optimization and shown that
it is NP-Hard and difficult to solve iteratively. Next, we
show that a relaxed version of the problem, the HOV3-
Carpool problem, is amenable to many classes of solution

Fig. 3. This figure demonstrates the convergence of the methods. Top:
For the smaller problem instances: {10, 20}, the three methods displayed
converge to the same ratio to the lower bound, but hill climbing converges
much faster and, for the larger problem instances of {50, 100, 1000}, to
a lower ratio. The classical local search method gives a steady but slow
convergence, whereas the random neighborhood search gives a more jagged
convergence. In the case of size 50 and 100, the classical local search method
converges to a slightly lower ratio than hill climbing, implying that hill
climbing may have reached a different local optimum (or not reached one at
all). In the case of problem size 1000, the best step and best random
(the gray near-horizontal lines) are further from the lower bound and were
cut short due to the timeout. Bottom: We display convergence only for the
hill climbing method and problem instances ≤ 100K. In all instances the
problem converges to between 1.1 to 2.4 times the lower bound. Notably, in
the largest problem size, hill climbing achieves a ratio close to 1, implying
that the solution is near optimal. Note that the x-scale is on a log scale.

methods for combinatorial optimization: local search, integer
programming, and dynamic programming. In particular, the
new relaxed formulation permits local search methods, and
we experimentally show that a sampling-based local search
method (hill climbing) scales up to 100K agents and con-
verges to a ratio of within 1.1 of the lower bound in 5 hours.
The other methods either do not complete in the time allotted
or do not converge as well.

This work is a first step towards incorporating various,
complex human considerations into carpool optimization.
There are many considerations yet to be addressed for a
real-world ride sharing system to be viable. For instance, our
work does not consider the delay caused by waiting for par-
ticipants, travel time, routing complications, or congestion.
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Fig. 4. Convergence of the simulated annealing method (lighter shades)
is much more chaotic than hill climbing (darker shades), and simulated
annealing does not converge to as low a ratio to the lower bound as the hill
climbing method. Note that the x-scale is on a log scale.

Additionally, participants’ preferences with respect to when
to travel or arrive may be non-uniform and may be correlated
with spatial-temporal features. There are also many complex
human factors that must be considered including fairness and
social and cultural compatibility. One of the major benefits
of local search methods such as we the ones we studied in
this article is that they are extremely flexible with respect
to different cost terms in the objective; however, further
investigation is needed for an empirical confirmation.

On the other hand, local search methods are highly sen-
sitive to the constraints of the optimization problem, and
therefore new methods will be needed for new or modi-
fied constraints, such as allowing for more flexible carpool
sizes or permitting participants to specify intermediate stops.
However, problems with such constraints can potentially
be decomposed into independent problems with simplified
constraints.

In practice, we expect that some of these complex cost
factors and constraints may actually contribute to cleaner
or faster methods, introduce new technical problems, and
improve the feasibility of carpooling in the real-world. We
especially encourage the research community to embrace the
complexity and take advantage of the structure within these
complex human factors.

There are several extensions to pursue next. We would
like to understand the algorithmic complexity of the HOV3-
problem, and we are interested in convergence guarantees for
the hill climbing method, perhaps by casting the method into
a MCMC framework and studying Markov chain summaries.
We are also interested in studying more complex agent
constraints and costs; for instance, agents may have limited
tolerance for deviating from a baseline travel plan. We are
interested in conducting more extensive experiments after
improving implementations, combining methods, or trying
alternative warm-starting schemes.
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